Protective Effects of Let-7a and Let-7b on Oxidized Low-Density Lipoprotein Induced Endothelial Cell Injuries

نویسندگان

  • Mei-hua Bao
  • Yi-wen Zhang
  • Xiao-ya Lou
  • Yu Cheng
  • Hong-hao Zhou
  • David Jourd'heuil
چکیده

Lectin-like low-density lipoprotein receptor 1 (LOX-1) is a receptor for oxidized low density lipoprotein (oxLDL) in endothelial cells. The activation of LOX-1 by oxLDL stimulates the apoptosis and dysfunction of endothelial cells, and contributes to atherogenesis. However, the regulatory factors for LOX-1 are still unclear. MicroRNAs are small, endogenous, non-coding RNAs that regulate gene expressions at a post-transcriptional level. The let-7 family is the second microRNA been discovered, which plays important roles in cardiovascular diseases. Let-7a and let-7b were predicted to target LOX-1 3'-UTR and be highly expressed in endothelial cells. The present study demonstrated that LOX-1 was a target of let-7a and let-7b. They inhibited the expression of LOX-1 by targeting the positions of 310-316 in LOX-1 3'-UTR. Over-expression of let-7a and let-7b inhibited the oxLDL-induced endothelial cell apoptosis, NO deficiency, ROS over-production, LOX-1 upregulation and endothelial nitric oxide synthase (eNOS) downregulation. Moreover, we found that oxLDL treatment induced p38MAPK phosphorylation, NF-κB nuclear translocation, IκB degradation and PKB dephosphorylation. Let-7a or let-7b over-expression attenuated these alterations significantly. The present study may provide a new insight into the protective properties of let-7a and let-7b in preventing the endothelial dysfunction associated with cardiovascular disease, such as atherosclerosis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regulation of the let-7a-3 Promoter by NF-κB

Changes in microRNA expression have been linked to a wide array of pathological states. However, little is known about the regulation of microRNA expression. The let-7 microRNA is a tumor suppressor that inhibits cellular proliferation and promotes differentiation, and is frequently lost in tumors. We investigated the transcriptional regulation of two let-7 family members, let-7a-3 and let-7b, ...

متن کامل

Cellular Stress Induced Alterations in MicroRNA let-7a and let-7b Expression Are Dependent on p53

Genotoxic stressors, such as radiation, induce cellular damage that activates pre-programmed repair pathways, some of which involve microRNAs (miRNA) that alter gene expression. The let-7 family of miRNA regulates multiple cellular processes including cell division and DNA repair pathways. However, the role and mechanism underlying regulation of let-7 genes in response to stress have yet to be ...

متن کامل

Acrolein decreases endothelial cell migration and insulin sensitivity through induction of let-7a.

Acrolein is a major reactive component of vehicle exhaust, and cigarette and wood smoke. It is also present in several food substances and is generated endogenously during inflammation and lipid peroxidation. Although previous studies have shown that dietary or inhalation exposure to acrolein results in endothelial activation, platelet activation, and accelerated atherogenesis, the basis for th...

متن کامل

Effect of let-7a overexpression on the differentiation of conjunctiva mesenchymal stem cells into photoreceptor-like cells

Objective(s): MicroRNAs (miRNAs) could regulate many cellular processes such as proliferation and differentiation. let-7a miRNA is one of the key regulators in the developmental transition of retinal progenitor cells into differentiated cells. Current evidence suggests that mesenchymal stem cells (MSCs) can isolate from various tissues such as bone marrow and conjuncti...

متن کامل

Olmesartan Attenuates the Impairment of Endothelial Cells Induced by Oxidized Low Density Lipoprotein through Downregulating Expression of LOX-1

Oxidized low density lipoprotein (ox-LDL) and its receptor, lectin-Like ox-LDL receptor-1 (LOX-1), play important roles in the development of endothelial injuries. Olmesartan can protect endothelial cells from the impairment caused by various pathological stimulations. In the present study we investigated whether olmesartan decreased the impairment of endothelial cells induced by ox-LDL by exer...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2014